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Abstract

In order to recognize an object in an image, we must determine the best-fit transformation which maps an
object model into the image. In this paper, we first show that for features from coplanar surfaces which
undergo linear transformations in space, there exists a class of transformations that yield projections
invariant to the surface motions up to rotations in the image field. To use this property, we propose
a new alignment approach to object recognition based on centroid alignment of corresponding feature
groups built on these invariant projections of planar surfaces. This method uses only a single pair of 2D
model and data pictures. Experimental results show that the proposed method can tolerate considerable
errors in extracting features from images and can tolerate perturbations from coplanarity, as well as cases
involving occlusions. As part of the method, we also present an operator for finding planar surfaces of an
object using two model views and show its effectiveness by empirical results.
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1 Introduction sections, and that we are provided with 2D views of the
object model that include such planar sections. Once we

A central problem in object recognition is finding the have solved with the transformation between model and
best transformation that maps an object model into the image, we can apply it to all the features on a 3D object,
image data. Alignment approaches to object recognition either by using a full 3D model [6] or by using the Linear
[6] find this transformation by first searching over possi- Combinations method on 2D views of the object [161.
ble matches between image and model features, but only The basis for our method is the consistency of an ob-
until sufficiently many matches are found to explicitly ject's structure under some simple transformations. To
solve for the transformation. Given such an hypothesized see how this works, we first summarize the derivation of
transformation, it is applied directly to the other model the constraint equation of the 2D affine transformations
features to align them with the image. Each such hy- which describe the motion of the object in space (see,
pothesis can then be verified by search near each aligned e.g.[11, 8]).
model feature for supporting or refuting evidence in the Let 0, P1, P2 , P3 be four non-coplanar points on an
image. object. Then, any point on the object can be represented

One of the advantages of Alignment approaches to by the vector sum:
recognition [6] is that they are guaranteed to have a
worst case polynomial complexity. This is an improve- 3

ment, for example, over correspondence space search OP = E c OPi (1)
methods such as Interpretation Trees [5], which in gen- i=1
eral can have an exponential expected case complexity. where the a2i's are real coefficients. When the object
At the same time, the worst case complexity for align- undergoes a linear transformation caused by its motion
ment can still be expensive in practical terms. For ex- in space, this equation will be transformed as
ample, to recognize an object with m features from an
image with n features, where the projection model is 3

weak perspective, we must search on the order of m3 n3  O'P' = ai O'Pil (2)
possible correspondences [6], where m and n can easily
be on the order of several hundred. One way to control where the rimes indicate the position of the features
this cost is to replace simple local features (such as ver-
tices) used for defining the alignment with larger groups after the motion. Taking the orthographic projections

(thereby effectively reducing the size of m and n). In this of these points to the xy image plane yields

paper, we examine one such method, by showing that 3

for features from planar surfaces which undergo linear op = •aiopi (3)
transformations in space, there exists a class of transfor-
mations that yield projections invariant to the surface 3
motions up-to rotations in the image field. o'p'W= ao'p (4)

This allows us to derive a new alignment approach to
object recognition based on centroid alignment of corre-
sponding feature groups built on these invariant projec- Since the opi's and o'p's are independent of one another,
tions of the planar surface. This method uses only a sin- there exists a unique 2D affine transformation L, w, such
gle pair of 2D model and data pictures, and is quite fast; that,
in our testing, it took no more than 15 msec (0.015sec) = L + w (5)
per sample model and data pair, each with 50 features.

As part of the method, we also present an operator where L is a 2 x 2 matrix and w is a 2D vector. Then,
for finding planar surfaces of an object using two model combining (3), (4) and (5), for an arbitrary point we get,
views and show its effectiveness by empirical results.

3

2 Problem definition o'p = Lop+ w + (-ai - 1)w (6)

Our problem is to recognize an object which has pla-
nar portions on its surface, using a single pairing of 2D Hence, as a constraint equation for the motion of a plane,
model and data views as features. Thus, we assume that we obtain the well known result:
at least one corresponding region (which is from a pla- op = Lop + w (7)
nar surface of the object) including a sufficient number
of features exists in both the model and data 2D views. Thus, the new position of any point (after the motion)
Although we do not explicitly address the issue of ex- is described by an affine transformation, and that trans-
tracting such regions from the data, we note that sev- formation can be found by matching a small number
eral techniques exist for accomplishing this, including the of points across images. The direct use of 2D affine
use of color and texture cues [12, 14], as well as motion transformations in object recognition was made earlier
cues(e.g.[15, 10]). We devise a method for finding an by Huttenlocher[6]. The issue in which we are interested
alignment between features of these planar regions. It is is whether there are properties of the affine transforma-
important to stress that our method is not restricted to tion which we can use to efficiently and reliably find the
2D objects. Rather it assumes that objects have planar 1 parameters of that transformation.



3 A class of 2D projections of planar B

surfaces invariant to linear A +

transformations

In this section, we show a class of transformations of 2D LX + w TY + C
image features from planar surfaces which yield a unique
projection up to rotations in the image field, regardless V
of the pose of the surface in space. First, the following -1

useful observation is made. A'X' + B'

[Definition] Figure 1: Commutative Diagram of Transformations
Let H be a positive definite symmetric matrix, expressed Given model feature X and corresponding data feature X',
as we seek conditions on the transformations A, A' such that

H = UTAU this diagram commutes.

where U is an orthogonal matrix and A is an eigenvalue

matrix of H, specifically, for some orthogonal matrix U, where H 1 and Hlt are

A = diag(AI, A2 ) square root matrices of H and H' respectively, and
H' = A'Ex',AT (14)

where Ai's are the eigenvalues of H which are all positive. (
The square root matrix HI of the matrix H is defined H = AExAT (15)

by, where Ex and Ex, represent the covariance matrices of

H1 = UTA½U X and X' respectively.

where
Proof:

A- diag(A2,A) (8) First, we show the necessity of the condition (13).

It is known that the positive definite symmetric square Substituting (9) to (11) into (12), we have,

root matrix of a positive definite symmetric matrix is (A'L - TA)X + A'w + B' - TB - C = 0. (16)
unique[7].
o Since this must hold for any X, we have
[Definition]
The covariance matrix of a feature distribution of vectors A'L = TA. (17)
{X. } with a mean vector M and a probability density Applying (9) to the covariances of X' and X, we have
function P(X) is given by, T

N EX, = L~xL (18)

E = X P(X,)(X, - M)(X, - M)T Substituting (18) into (14) yields
i=i AL1xxLTATr = H'. (19)

where N is the number of features.
o3 On the other hand from (15) we have

[Proposition 1] Ex = A- 1 H(AT)- 1 = A-iH(A-1 )T. (20)
Let X be a model feature position and X' be the cor- Then, substituting (20) into (19) yields
responding data feature position. We can relate these
by (A'LA- 1 )H(ALA- 1 )T = H'. (21)

X' = LX + w (9) Since H and H' are positive definite symmetric matrices,

Now suppose both features are subjected to similar (21) can be rewritten as

transformations (APLA-.1H)(ALA-.1H)T - H!(Ht)T (22)

Y = AX+B (10) where Hi, H4t are again positive definite symmetric

Y' = A'X' + B' (11) matrices.

Y' = TY + C (12) Then, from (22)

Then a necessary and sufficient condition for these trans- (23)
formations to commute (i.e. to arrive at the same values A'LA-'H1 = H (23)

for Y') for all X, X' is that (see Figure 1) Thus, we get

HOUH- = T (13) 2 A'LA- 1 = H4+UH-½ (24)
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• where U is an orthogonal matrix, where 'Z and V' are eigenvector matrices and A and A'
Then, combining (17) and (24) finally we reach (13). are eigenvalue matrices of the covariance matrices of X
Clearly, (13) is also a sufficient condition. and X' respectively, U and U' are arbitrary orthogonal
0 matrices, and c is an arbitrary scalar constant.

Note that this property is useful because it lets us
relate properties of object and data together. In partic- Proof:
ular, if the projection of the object into the image can Clearly,
be approximated as a weak perspective projection, then A = cA-½Tr (33)
we know that this defines a unique affine transforma-
tion of the planar object surface into the image[6]. The A' = cA'-½tT (34)
proposition gives us strong conditions on the relation- are solutions for (25).
ship between linear transformations of the object, and Let an arbitrary solution A of (25) be expressed as
the induced transformation of its projection into the im- A = UA. Then,
age.

Now, if we limit T to orthogonal transformations, the
following proposition holds. ALx AT - UAx ATUT (35)

-- c2U'UT (36)
[Proposition 2] = c21 (37)
A necessary and sufficient condition that T in (13) is an
orthogonal matrix for any Ut is Therefore, A can be expressed as

H' - H - c2I (25) A=UA (38)

where I is the identity matrix and c is an arbitrary scalar where U is an arbitrary orthogonal matrix and c is an

constant. arbitrary scalar constant.
In the same way,

Proof: A' = U'A' (39)
Using the assumption that T is an orthogonal matrix, where U' is an arbitrary orthogonal matrix.
from (13), we have 0

I 2TT (26) By combining Proposition 2 and the following two
-" TTT (26) Tproperties, we can derive the major claim of this sec-

= {H~UH-4 }{H!UH-}T (27) tion.

= HIUH-lUTH4. (28) [Lemma 1]

Rearranging this, we get When U is an orthogonal matrix,
UT H• = HUT (29) U is a rotation matrix 4== det[U] > 0

U is a reflection matrix i det[U] < 0

In order for any orthogonal matrix U to satisfy (29), as
H and H' are positive definite, Proof

When U is an orthogonal matrix, U can be expressed as

where c is an arbitrary scalar constant. J C c ) w iom
c S when U is a reflection matrix

It should be noted that it is not possible that T in s -c
(13) is the identity matrix for any U. Thus, we are not
allowed to align each model and data feature by just set- where c2 + 82 = 1. Hence, the lemma is proved.

ting H and H' to some matrices, and solving for A and 0
A'. This is because the distributions have been normal- [Lemma 2]

ized, so that their second moments are already useless When a planar surface is still visible after the motion in

for determining the orientations of the distributions. space, det[L] > 0.

Proposition 2 allows us to provide the following useful
proposition. Proof.

As is well known, any plane can be made parallel to

[Proposition 3] the xy image plane by rotations around the x and y

Any solution for A and A' in (25), that is, axes. The effect of these rotations in the xy plane can
be expressed by a shear S and a subsequent dilation D.

A'•x, A"" = A¶xAT = c2l Specifically,

can be expressed as S= 13 (41)

A = cUA-½OT (31)D / )

A' = cU'A'-½$" (32)3 0 (



When this motion of the plane takes place so that it is 4 Alignment using a single 2D model
always visible, clearly a > 0, 3 > 0, - > 0. Thus, we view
have det(DS] > 0. When we do this operation to the
object planar surface both at the pose for the model and In this section, we show how we can align the 2D model
the data by respectively DS and IDS', it is easy to see view of the planar surface with its 2D images using the
that the following relation holds, tool derived in the last section.

RDS = IYS'L (43) 4.1 Using the centroid of corresponding

for some rotation matrix R. feature groups

Then, from lemma 1 we get, If the model and data features can be extracted with no

det[L] = det[S.'-'Y-1RDSJ > 0 (44) errors, and if the surface is completely planar, then ap-
plying the presented transformation to model and data
features will yield new feature sets with identical shapes

0 (up to an image plane rotation). Thus, in this case, our
Finally, the following constructive property allows the problem, i.e., recovering the affine parameters which gen-

claims presented above to become the basis of a practical erated the data from the model is quite straightforward.
tool for recognizing planar surfaces. One way to do this is simply to take the most distant

features from the centroid of the distribution both in the
[Theorem 1] model and data, and then to do an alignment by rotat-
When (9) represents the motion of a plane, and the ing the model to yield a complete coincidence between
transformation for model and data are respectively (33) each model and data feature. Then, we can compute the
and (34) such that both 0 and 0' represent rota- affine parameters which result in that correspondence.
tions/reflections, then T in (12) is a rotation matrix. However, the real world is not so cooperative. Errors

will probably be introduced in extracting features from
Proof: the raw image dat-, and, in general, the object surfaces
From proposition 1, may not be as planar as we expect. To overcome these

A'L = TA (45) complications, we propose a robust alignment algorithm
that makes use of the correspondences of the centroid of

where A and A' are chosen as in (33) and (34) such that corresponding feature groups in the model and data.
both 4 and 4' represent rotations/reflections.
Then, from lemma 1 and 2, we have

det[T] = det(A'LA-1] > 0. (46)

0
What does this imply? If we have a set of model

features and data features related by an affine transfor-
mation (either due to a weak perspective projection of
the object into the image, or due to a linear motion of
the object image between two image frames), then if we
transform both sets of features linearly in a well defined
way (via (33) and (34)), we derive two distributions of
features that are identical up to a rotation in the image
field. This implies that the transformed distributions
are unique up to their shapes. More importantly, it also
provides an easy method for finding the related transfor-
mation.

A physical explanation of this property is given using
Figure 2 as follows. Suppose the upper pictures show
the surfaces in space at the model and the data poses as
well as the respective orthographic projections. Looking
at the major and minor axes of the 2D model and the
data, we can change the pose of the planes so that the
major and minor axes have the same length in both the
model and data, as depicted in the lower pictures. This
is nothing but a normalization of the feature distribu-
tions, and the normalized distributions are unique up to
a rotation, regardless of the pose of the plane, i.e., no
matter whether it is from the pose for the model or for
the data.

An example of applying the proposed transformation
is shown in Figure 3. 4
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Figure 2: Physical explanation of the Invariant Projection
The upper pictures show the surfaces in space at the model and the data poses, as well as their orthographic projections to
the image field. The lower pictures show the surfaces and their projections at the poses yielding normalized distributions.
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Figure 3: AD Example of the Application of Invariant Projection
Upper left: the original model features, Upper right: the original data features, Lower left: transformed model features, Lower
right: transformed data features. Transformed features from the model and the data have the same distribution up to a
rotation in the image field.
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Here we see an important property hold: for using feature group centroids, however, their method
can only be applied to planar objects, as described in

[Theorem 2] the paper.
When the motion of the object in space is limited to
linear transformations, the centroid of its orthographic 4.2 Grouping by clustering of features
projection to a 2D image field, i.e., centroids of image Since affine parameters can be determined from three
feature positions, is transformed by the same transfor- point correspondences, our problem becomes one of ob-
mation as that by which each image feature is trans- taining three corresponding positions in model and data,
formed. in the presence of perturbations. Based on the obser-

vations made in the preceding sections, we propose to
Proof: group the model and data features using their trans-
When any point Xi on the object surface in space is formed coordinates, so that we can extract a single fea-
transformed to X! by a 3D linear transformation T, its ture from each of a small number of groups. The goal is
orthographic prcjection xi is transformed to xz by to use such groups to drastically reduce the complexity

= IT 11 i for i = 1to N (47) of alignment based approaches to recognition, by finding
i =groups whose structure is reproducible in both the model

where N is the number of points, 11 represents the or- and the data, and then only match distinctive features

thographic projection of object points, and 11' is the of such groups.

lifting operation. Specifically, One way to group features is to employ clustering
techniques. In the selection of clustering algorithm from

Xi = lIXi (48) the many choices, taking into account the use of the
=X1•= (49) property we have derived in the last section, that is, the

transformed model and data features are unique up to
This is also true for any of the linear combinations of rotations and translations, we set the following two cri-
these points, because teria: (a) invariance of the clustering criterion to rota-

N N tions and translations of the x, y coordinate system, (b)
ai xI = .a 1X! (50) low computational cost. The criterion (b) is also crit-

ical, because if the computational cost of clustering is
j=1 i=1 similar to those of conventional feature correspondence

N approaches, the merit of our method will be greatly de-

= ZotiH•TXi (51) creased.
We have opted to use Fukunaga's version of ISODATA

N algorithms [3, 4, 9] for the following reason. The crite-
= T 11"-lai Xi (52) rion of this algorithm is to minimize the intraclass co-

i=1 variances of the normalized feature distribution instead
N of the original distribution. Specifically, let the criterion

= HT-I(ZaiXi) (53) be:

i=I J = trace[K,] (54)
where adt s are arbitrary real coefficient. Thus, the
proposition is proved, where

0] Kw, E YiM1Q(wi)Ki (55)

Moreover, we see that the following reliable property

holds. where Q(wi) is the probability density function of the ith
cluster, M is the number of clusters, and Ki is the in-

[Proposition 4] tragroup covariance of the ith cluster for the normalized
When the errors in extracting features and/or the per- feature set. The normalization of an original features
turbation of their depth from coplanarity is zero-mean, is performed using the same transformation as that pre-
the centroid is transformed by the same transformation, sented in the last section. Therefore, applying ISODATA
although each feature point is no longer guaranteed to on our transformed coordinates is equivalent to adopting
be aligned by the same transformation. Fukunaga's method. It is clear that the criterion given

in (54) is invariant to the rotation and translation of the
The proof is straightforward, and is not given here. x, y coordinate system.

Note that these properties are generally true for any ob- Moreover, since the ISODATA algorithm, starting
ject surface and its motions. The coplanarity of the sur- from the initial clustering, proceeds like a steepest de-
face does not matter. In the case when the object hap- scent method for ordered data, it is computationally very
pens to be planar, as the motion of the 2D image feature fast. It runs in O(N) time in terms of the number of the
is described by an affine transformation, the centroid of features N to be classified, when we set the upper limit
the features is also transformed by the same affine trans- to the number of iteration as is often done. We should
formation. also note that, although it is not guaranteed that it can

In [13], the use of region centroids was proposed in ever reach the real minimum of J, we know that our aim
the recognition of planar surfaces. Unlike our approach 7 is not to minimize/maximize some criterion exactly, but



to yield the same cluster configuration both in model and where a = a - a, and (x', y)T and (p, 9)T are the re-
data clustering. Minimization of a criterion is nothing spective mean vectors of the model and data feature dis-
more than one attempt to this. tributions. Clearly, the existence of Lij's which satisfy

(56) and (57) is the necessary and sufficient condition
4.3 Aligning a model view with the data that the feature set is distributed coplanarly.
Now we can describe an algorithm for aligning a 2D view Let the covariance matrices of U = (x', x, y) and
of a model with its novel view, which is assumed to be V = (y', x, y) respectively be ('Cr and C%. Then, we
nearly planar. Note that, however, to determine the see that the following lemma holds.
best affine transformation, finally we must examine all
the feature groups isolated from the data, as we do not [Lemma 3]
know which group in the data actually corresponds to
the planar surface which has been found in the model. det[Cu] = 0 x1 = L11x + L12 Y (58)

"* Step 0: For a feature set from a 2D view of a model, for some real (L1I, L12 ) 0 (0, 0)
compute the matrices given in (33) where U may be det[Cv] = 0 * y' = L21X + L22y (59)
set to I and generate the normalized distribution, for some real (L 21 , L22 ) 0 (0, 0)
Cluster based on ISODATA to yield at least three
clusters. Compute the centroid of each cluster re- This is basically the same result as that presented by
produced in the original coordinate. This process Ando[1]. A proof is given in the Appendix. By using this
can be done off-line, property, we can evaluate to what extent a feature set is

"distributed coplanarly in space, without estimating the
Step 1: Given a 2D image data feature set, do the best-fit affine parameters Lij, by some method, say, least
same thing as step 0 for the data features, square errors. In the following part, we concentrate the

" Step 2: Compute the affine transformation for each discussion on (58). The same argument holds for (59).
of the possible combinations of triples of the cluster In [10], claims were made for the necessity of normal-
centroids in model and data. ization of the measure. We support that argument here,

"* Step 3: Do the alignment on the original coordi- because clearly det[Cu] depends on the resolution of the

nates and select the best-fit affine transformation. image, so we can not use det[Cu] directly to evaluate the
coplanarity. In addition, in order to remove the effect of

Step 1 is clearly O(N). In Step 2, computation of affine linearity of the (x, y) distribution itself from det[Cu], we
parameters must be done for only a small number of transform U to yield a normalized distribution.
combinations of clusters of model and data features. So,
it runs in constant time. Step 3 is, like all other align- AU (60)
ment approaches, of the order of the image size. Thus, where,
this alignment algorithm is computationally an improve-
ment over the conventional ones for object recognition. (A T (61)

We stress again that our method is not restricted to 0  0 )-6
planar objects. We simply require a planar surface on
an object to extract the alignment transformation. This where A and $ are respectively eigenvalue and eigenvec-
transform can then be applied to a full 3D model or tor matrices of the covariance matrix of (x, y), and a is
used as part of a Linear Combinations approach to sets the variance of x'.
of views of a 3D model to execute 3D recognition. Let Cu be the covariance matrix of (J. Then, guided

by the Schwarz Inequality for the eigenvalues a, #3, - of

5 Finding planar portions on the object Cu, which are all positive, we get a normalized measure

surface using two 2D model views 1 - fl-f - det[C']C,,,, - det[Cu] (62)

In this section, we derive an operator for detecting the (T-- -")3 det[c1] c'

planar portions on the object surface without the di- where Cz is the covariance matrix of (x, y) and C,•,, is
rect use of depth information. This operator uses two the variance of x'.
2D model views with a sufficient number of correspon- Note that, since det[Cu] = aOy indicates the square of
dences between features. The basic underlying idea in its the volume of the distribution of U, the numerator of
derivation is the same as those used for motion/accretion (62) reflects the relation in (56), while the denominator
region detection [1, 10], and for smooth/singular segment has no direct connection to it.
detection along a curve [2]. In the same way, for V we get,

5.1 Evaluating the planarity of a surface det[C']Cy,y, - det[Cv] (63)

Suppose that we have the correspondences between det[C1]C',Y,
model feature set {X) and data feature set {X'J. From where Cy,,, is the variance of y.
the expansion of (7) to x, y components, we have Then, combining these two, finally we get an operator P

Z' = L11x + L12Y (56) det[C 1](C,:', + Cyy, ) - (det[Cu] + det[Ci,])
P = (64)= L2 1i + L22y (57) 8 det[C1 ](G'-.' + Q'')



Note that P is a normalized measure which is free As in the last section, we used random patterns for
from any physical dimensions, with the following impor- model features, random values for affine parameters, and
tant property that is easily shown by a simple calcula- additive Gaussian perturbations to simulate the feature
tion. extraction errors and the depth perturbations of the ob-

ject surface in space from planarity. We also simulate
[Lemma 4] the case including occlusions.
P is invariant to rotations and translations in the zy
image plane. [Algorithm Implementation]

In order to obtain three clusters in model and data, we
5.2 Using the operator in detecting planar adopted a hierarchical application of ISODATA. This

surfaces is because through some tests of ISODATA, we learned
When we set the tolerable perturbation of the surface at that the accuracies for generating three clusters severely
the rate P > r, then we can introduce a coefficient to declined from those for generating two clusters. There-
adjust the measure P so that it ranges from I down to fore, the actual method we took for feature clustering
0 within the range P > r. This is done by choosing the was: (1) first do clustering on the original complete fea-
scalar coefficient k such that, ture set to yield two clusters for model and data, (2)

then, do clustering again for each of the clusters gener-
det[C'I(Cx.,X, + Cyt ) - k - (det[Cu] + det[Cv]) = 0(65) ated in the first clustering to yield two subclusters from

d[ , ,each cluster. To find the best affine parameters Lij,

where E{P(dcu, Cv)} = r, E{-I denotes an expectation all the possible combinations of the centroid correspon-
of the P obtained through experimental results. Thus, dences between model and data clusters and subclusters
we have were examined. Initial clusters were produced by se-

det[C'](C.,.' + Cy,y,) - k . (det[Cu] + det[Cv]) lecting the initial separating line as the one that passes
P(k) = (66)through the centroid of the distributions to be classi-

det[C'](Cx, + C,,) fled and is perpendicular to the line passing through the

So, we have derived a pseudo-normalized measure for the centroid and the most distant feature position from the
specific range of surface coplanarity with which we are centroid.
concerned. It is easy to see that P(k) is again invariant In Figure 5, intermediate results of the hierarchical
to rotations and translations in the zy image plane. procedures described above are shown.

5.3 Empirical results on the sensitivity of P
We show empirical results on the sensitivity of P to the
perturbations of feature positions caused by their depth
perturbations in space. Examinations were performed on
two sets of model features produced by canonical statis-
tical methods. First, a set of model features were gener-
ated randomly. Then, generating random affine parame-
ters, in our case Lij, each model feature was transformed
by this transformation to yield another model feature
set. Finally, we added perturbations to the second set
of features according to a Gaussian model. Since the ef-
fect of depth perturbations appears only in the direction
of the translational component of the affine transforma-
tion, in proportion to the dislocation of the point from
the plane[Il ], we added perturbations only in the direc-
tion of the x axis. Perturbations along other directions
yielded similar results.

Figure 4 shows the values of the operator P versus the
deviation of the Gaussian perturbation. The horizontal
axis shows the Gaussian deviation and the vertical axis
shows the value of the operator P. Twenty model pairs
were used for each of the Gaussian perturbation, and 50
features were included in each model. In the Figure, the
average value of P from the 20 pairs is plotted versus
the Gaussian deviation. The value of the operator P
decreases monotonically as the deviation increases.

6 Experimental results

In this section, experimental results show the effective-
ness of the proposed algorithm for recognizing planar
surfaces. 9
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Figure 4: Sensitivity of the operator P to perturbations of the depth from planarity in space.
The values of the operator P are plotted versus the Gaussian deviations of the perturbations in data feature. The horizontal
axis shows the Gaussian deviation and the vertical axis shows the value of the operator P. Twenty model pairs were used for
each of the Gaussian perturbations, and 50 features were included in each model.
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In each of the following experiment 100 sample model 5 10 15 20 25
and data with 50 features were used, and the average of - 0.01 7 0 0 0 0
their results were taken. 0.01- 0.05 24 29 21 15 1

[With errors in extracting features] 0.1 - 0.2 19 17 34 38 18
In Figure 6, errors in recovering the affine parameters 0.2 -03 17 8 11 8
Lii, which are estimated by the following measure, are 0.3 - 0.4 11 4 1 14 10
plotted versus the rate of the Gaussian deviation to the 0.4- 3 19 35
average distance between closest features of the data. 2 - 3 - 3

L - Lj)2 Table 2: Number of Samples with Errors vs. Occlusion.
error = ijL? (67) The number of the samples with errors out of 100 model and

13 data pairs are shown versus the rate of missing features in the

where Lij is the recovered values for affine parameters. data. Each model has 50 features. The first column shows

The average distance between closest feature points was the recovery errors, and the first row shows the percentages

estimated by of missing features.

a a det[L]A
averageV N (68) by the errors in feature extractions.

where A is the area occupied by the model distribution, [Depth perturbation from planarity]
and N is the number of the features included. The per- In the same way, in Figure 8 estimation errors are shown
turbation rate used to generate Gaussian deviation were to simulate the case where the surface has depth pertur-
takeit to be the same in both the x and y coordinates to bations from planarity. As described previously, per-
simulate the errors in feature extraction. In Figure 6 we turbations in the image field caused by depth variation
note that errors are almost proportional to the pertur- occur in the direction of the translational component of
bation rate. In Figure 7, examples of the reconstructed the afiine transformation. Therefore, the perturbation
data distributions, with different errors in recovering the rate was taken only for the x coordinate. Similar results
affine parameters, were superimposed on the data with were obtained from other directions of perturbations.
no perturbations. The average errors in recovering affine From Figure 8, again, we can see that our algorithm is
parameters increased, as perturbations in the data fea- quite stable against perturbations caused by the depth
tures grew larger. However, even in such cases, errors variations of the points from planarity. Thus, our
are still small for most samples as we can see in Table 1. method can be used to obtain approximate affine param-
In almost all cases when the recovering of Lij results in eters for object surfaces with small perturbations from
large errors, the first clustering failed due to the change planarity.
of the most distant features in model and data. The ra-
tio of this kind of failure increased as the perturbation [With Occlusion]
percentage grew. That is the reason for the error ele- In Figure 9, the errors in recovering afiine parameters
vations in such samples. But, by combining properties are plotted versus the rate of the number of the miss-
other than positions of the features in giving initial clus- ing features in the data, which is to simulate the case
ters, such as colors, this will be considerably improved, including occlusions.

From Figures 6 and 7, our algorithm is found to be Roughly speaking, the errors increase as the miss-
quite robust against considerable perturbations caused ing features increase. The perturbations from the

monotonous elevation of the errors are caused by the
unstable initial clusterings. Actually, we note in Table 2
that even in the cases with high average errors, many of

5 10 15 20 25 130 35 the samples result in a good recovery, while some result
- 0.01 73 52 30 21 7 3 0 in large errors. This is because the accuracy of the ini-
0.01 - 0.05 12 17 27 31 36 37 31 tial clustering in our algorithm depends on how much the
0.05 - 0.1 8 10 14 16 15 14 14 most distant feature from the centroid remain identical
0.1 - 0.2 2 3 5 4 8 10 11 in model and data. So, when it changes critically due to
0.2-0.3 1 2 2 3 ' 6 7 - 5 7 the missing of features, it becomes unstable. However,

0.3 - 0.4 0 2 3-1 5 1 3 5 5 again this can probably be fixed by combining other cues

0.4- 3 14 18 17 14 26 32 in obtaining initial clustering.

Table 1: Number of Samples with Errors vs. Perturba-
tion.
The number of the samples with errors out of 100 model
and data pairs are shown versus perturbation rate. The first
column shows the recovery errors, and the first row shows the
perturbation percentages included in the data features. 12
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Figure 6: Errors in recovering affine parameters Lij from the data extracted with errors.
The horizontal axis shows the percentage of the Gaussian deviation to the average distance between closest features and the
vertical axis shows the error in recovering Li.. One hundred model and data pairs were used for each of the perturbation

ratio, and 50 features were included in the model and data. Errors are almost proportional to the the perturbation rate.
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Figure 7: Reconstructed data features by the recovered affine parameters
Reconstructed data features are superimposed on the data generated with no errors: with the error in recovering L.3j Upper
left: 0.0027, Upper right: 0.069, Lower left: 0.11, Lower right: 0.27. White boxes shows the data features without errors,
while the black boxes show the reconstructed features.
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Figure 8: Errors in recovering afiine parameters Lij from datum with depth perturbations.
The horizontal axis shows the percentage of the Gaussian deviation to the average distance between closest features and the
vertical axis shows the error in recovering Lj,. One hundred model and data pairs were used for each of the perturbation
ratio, and 50 features were included in each model and data. For small depth perturbations, the recovered affine parameters
can work as a good approximate.
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Figure 9: Errors in recovering affine parameters Lij in case with occlusion.
The horizontal axis shows the percentages of the missing features and the vertical axis shows the error in recovering Lj. The
number of model features was 50. One hundred model and data pairs were used for each of the rate of missing features in
the data.
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When the number of features is sufficiently large, this is
equivalent to,

ox + Iy+ y.z' = 0 (72)

Ignoring the case where /3/a, y/a have infinite values,
we obtain

ii + ( +•l/)p-(/a):' = 0 (73)

Then by setting L 11 =fI// and L12 = y/a, we have the
lemma.
0
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